Year 6

Place Value	4 operations ($+,-, x, \div$)	Number: Vocabulary
Read, write, order and compare numbers to at least $10,000,000$ and determine the value of each digit e.g. 27,564,839 The value of the 2 is twenty million The value of the 7 is seven million The value of the 5 is five hundred thousand The value of the 6 is sixty thousand etc. Represent numbers in different ways e.g. 2,221,312 Two million, two hundred and twenty one thousand, three hundred and twelve Round any whole number up to a required degree of accuracy Use negative numbers in context Calculate intervals across 0 e.g. $4-6=-2$ 5 more than -2 is 3	Perform mental calculations, including with mixed operations and large numbers Know the order in which to perform operations e.g. Identify common factors and common multiples and prime numbers. Multiply multi-digit numbers up to four-digit by a twodigit number (More details on calculation policy) e.g. $3792 \times 28=$ Divide numbers up to 4 digits by a two-digit number using the formal written method of short or long division and interpret remainders as whole number remainders, fractions or by rounding as appropriate for the context (More details on calculation policy)	Multiple: 25 is a multiple of 5 Common Multiples A number which is multiple of two or more given numbers e.g. common multiples of 12 and 20 are 2 and 4 Factor: factors of a number can multiply to give that number. 5 is a factor of 25 $5 \times 3=15$ (factor \times factor $=$ product) Factor Pairs: 2 numbers that multiplied to give that number. Factors pairs of 12 are: $1 \times 12,2 \times 6,3 \times 4$ Know, understand and use the following words: Prime Numbers: Prime numbers are only divisible by 1 and themselves Prime Factors: Factors that are also prime numbers. E.g. prime factors of 15 are 3 and 5 because $3 \times 5=15$ and 3 and 5 are both prime numbers Common Factors: Factors that are the same for 2 numbers. Common factors of 12 and 15 are 1 and 3 as both 12 and 15 are multiples of 1 and 3 Composite Numbers: Whole numbers that are not prime numbers Square Numbers: A number x by itself twice. E.g. 4×4 4 squared is 16 . This is recorded as $4^{2}=16$ Cube Numbers: A number x by itself three times. E.g. $4 \times 4 \times 4$ 4 cubed is 16 . This is recorded as $4^{3}=16$

Fractions	Fractions: Addition and Subtraction	Fractions: Multiplication and Division
Use common factors to simplify fractions Use common multiples to express fractions in the same denomination Compare and order fractions including fractions > (greater than) 1	Add and subtract fractions with the different denominators and mixed numbers, using the concept of equivalent fractions e.g. adding fractions with different denominators $\frac{5}{8}+\frac{3}{16}=$ The lowest common multiple of 8 and 16 is 16 so $\frac{5}{8} \text { becomes } \frac{10}{16}$ and the calculation becomes $\frac{10}{16}+\frac{3}{16}=\frac{13}{16}$ e.g subtracting fractions with different denominators $\frac{7}{9}-\frac{1}{2}=$ The lowest common multiple of 9 and 2 is 18 so $\frac{7}{9}$ becomes $\frac{14}{18}$ and $\frac{1}{2}$ becomes $\frac{9}{18}$ and the calculation becomes $\frac{14}{18}-\frac{9}{18}=\frac{5}{18}$ Adding mixed numbers e.g. $1 \frac{1}{2}+2 \frac{1}{6}=1 \frac{3}{6}+2 \frac{1}{6}=3 \frac{4}{6}=3 \frac{2}{3}$ Subtracting mixed numbers e.g. $3 \frac{1}{4}-1 \frac{3}{4}=$ \square \square Exchange 1 whole for $\frac{4}{4}$ so the calculation becomes $2 \frac{5}{4}-1 \frac{3}{4}$ and this $=1 \frac{2}{4}$ and simplifying this answer= $1 \frac{1}{2}$ $3 \frac{1}{4}-1 \frac{3}{4}=2 \frac{5}{4}-1 \frac{3}{4}=1 \frac{2}{4}=1 \frac{1}{2}$	Multiply fractions by whole numbers e.g. $2 \frac{3}{5} \times 3=7 \frac{4}{5}$ $\begin{aligned} & 2 \times 3=6 \\ & \frac{3}{5} \times 3=\frac{9}{5}=1 \frac{4}{5} \\ & 6+1 \frac{4}{5}=7 \frac{4}{5} \end{aligned}$ Multiply simple pairs or proper fractions, writing the answer in its simplest form e.g. $\frac{1}{4} \times \frac{1}{2}$ is the same as $\frac{1}{4}$ of $\frac{1}{2}$ so $\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$ Divide proper fractions by whole numbers When the numerator can be divided by the whole number, the denominator stays the same and the numerator is divided by the whole number e.g. $\frac{2}{5} \div 2$ The numerator can be divided by the whole number so $\frac{2}{5} \div 2=\frac{1}{5}$ When the numerator is not a multiple of the whole number by divided by diagrams can help. e.g. $\frac{1}{3} \div 2=\frac{1}{6}$ one third divided by 2

FDP: Equivalence, and Place Value	FDP: Multiplication and Division	Ratio and Proportion
Recall and use equivalences between simple fractions, decimals and percentages e.g. Know the value of each digit in numbers given to three decimal places e.g. Solve problems involving the calculation of percentages e.g. 15% of $£ 200$ Compare percentages e.g. 25% of 300 < (is less than) 10% of 1000	Multiply and divide numbers by 10, 100, and 1000 giving answers up to three decimal places Multiply one-digit numbers with up to two decimal places by whole numbers e.g. 0.3×6 e.g. 0.3×6 Compare this with the calculation 3×6 $\begin{aligned} & \begin{array}{c} 3 \\ \pi \leqslant 10 \end{array}=\frac{18}{\pi \div 1} \\ & 0.3 \times 6=1.8 \\ & \hline \end{aligned}$ To get from 3 to 0.3, we divide by 10.0 .3 is 10 times smaller than 3 . This means that the answer will also be 10 times smaller $(18 \div 10=1.8)$. Divide decimals by whole number e.g. $3.69 \div 3=$	Use and understand the language of 'for every ..., there are ...' e.g For every 1 red dot there are 2 blue dots This is recorded as 1:2 A common misconception is that this is the same as $\frac{1}{2}$ but as the image illustrates, 1:2 is not the same as $\frac{1}{2}$. The fraction of blue dots is $\frac{2}{3}$ The fraction of red dots is $\frac{1}{3}$ Solve problems involving similar shapes where the scale factor is known or can be found Scale Factor - Enlarging an object to make them larger by 2 or 3 times etc. e.g Rectangle A has been enlarged by a scale factor of 3

Algebra	Measurement	Shape
Find a rule using a function machine e.g. a one-step function machine e.g. a two-step function machine Use simple formulae e.g. $3 y+10=n$ where $y=10$ what does $n=$ $n=40 \text { as } 3 \times 10(y)=40(n)$ Generate and describe linear number sequences Express missing number problems algebraically Solve 2 step equations e.g. $2 x+5=12$ So to calculate $2 x$ is $12-5$ And to calculate x is $7 \div 2$ so $x=3.5$ Find pairs of numbers that satisfy an expression with two unknowns or pairs of values e.g. $a+b=6$ Find pairs of values e.g. $a b+b=18$	Convert units of measure using decimal notation up to three decimal places e.g Convert between miles and kilometres 5 miles $=8$ kilometres Recognise that shapes with the same area can have different perimeters and vice versa e.g. both of these shapes have an area of $12 \mathrm{~cm}^{2}$ but the perimeters are different (16 cm and 14 cm) Recognise when it is possible to use formulae for area and volume of shapes e.g. length x width for regular 4 sided shapes Calculate the area of parallelograms and triangles either by counting squares e.g. Area of a triangle formula is base x height $\div 2$ Area of a parallelogram formula is base x perpendicular height 5 cm Calculate, estimate and compare volume of cubes and cuboids using $\mathrm{cm}^{3}, \mathrm{~m}^{3}$ and then mm^{3} and km^{3} volume $=10 \mathrm{~cm}^{3}$ $5 \mathrm{~cm} \times 4 \mathrm{~cm} \times 3 \mathrm{~cm}=60 \mathrm{~cm}^{3}$	Draw 2d shapes using given dimensions and angles Compare and classify geometric shapes based on their properties and sizes Illustrate and name parts of a circle including radius diameter and circumference Know that diameter is twice the radius Recognise, describe and build simple 3d shapes, including making nets e.g. Triangular Prism Square Based Pyramid ryramitu Cube

